

Journal of Organometallic Chemistry 631 (2001) 54-58

www.elsevier.com/locate/jorganchem

(Fluoroorgano)fluoroboranes and -fluoroborates Part 3. Polyfluoroalken-1-yldifluoroboranes

H.-J. Frohn ^{a,*}, V.V. Bardin ^b

^a Fachgebiet Anorganische Chemie, Gerhard-Mercator-Universität Duisburg, Lotharstraße 1, D-47048 Duisburg, Germany ^b N.N. Vorozhtsov Institute of Organic Chemistry, 630090 Novosibirsk, Russia

Received 9 March 2001; accepted 16 April 2001

Dedicated to Professor Voronkov on the occasion of his 80th birthday

Abstract

Polyfluoroalken-1-yldifluoroboranes RCF=CFBF₂ (R = F, *cis-*, *trans-*Cl, *trans-*C₄F₉, *cis-*C₂F₅, *cis-*C₆F₁₃, *trans-*C₄H₉, *trans-*C₆H₅) were prepared by defluoridation of the corresponding fluoroborate salts K[RCF=CFBF₃] using boron trifluoride in dichloromethane or fluorotrichloromethane. The alkenylboranes were characterised by ¹H-, ¹¹B- and ¹⁹F-NMR spectroscopy. Their reactivity towards ether, water and anhydrous HF was investigated. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Boranes; Borates; Polyfluoroalken-1-yl boron compounds; NMR

1. Introduction

Recently we have described the successful defluoridation of the potassium salts of polyfluoroaryltrifluoroborates $K[C_6H_{5-n}F_nBF_3]$ (n = 1-5) and of perfluoroalkyltrifluoroborates $K[C_nF_{2n+1}BF_3]$ (n = 3, 6) under formation of the corresponding polyfluoroaryl- and perfluoroalkyldifluoroboranes using the fluoride anion acceptors BF_3 or arsenic pentafluoride [1,2]. In our previous paper [3], the synthesis of salts K[RCF= -CFBF₃] and their NMR and IR spectra are reported. Fluoro-containing alken-1-yldifluoroboranes are scarcely studied compounds. In 1960, trifluorovinyldifluoroborane was prepared from CF2=CFBCl2 and SbF₃ (59% yield) or from (CF₂=CF)₂SnMe₂ and BF₃ (18% yield) [4]. Later, the difluoroboranes $CF_2=C (CF_3)BF_2$ and *cis*-BF₂CF=CFBF₂ were obtained by the addition of BF₃ to CF₂=C=CF₂ (70% yield) [5] or B_3F_5 to $CF_2=CF_2$ (yield was not given) [6]. In a preliminary communication [7], we demonstrated the principal approach to polyfluoroalken-1-yldifluoroboranes based on the defluoridation of the corresponding K [RCF=CFBF₃] salts using BF₃.

Here, we report the detailed synthesis of various difluoroboranes RCF=CFBF₂ (R = F, *cis-*, *trans-*Cl, *cis-*C₂F₅, *cis-*C₆F₁₃, *trans-*C₄F₉, *trans-*C₄H₉, *trans-*C₆H₅) by defluoridation of the fluoro borate salts in an inert solvent (CH₂Cl₂ or CCl₃F), their NMR spectra as well as their reactivities towards water, ether or anhydrous HF (aHF).

2. Results and discussion

Potassium polyfluoroalken-1-yltrifluoroborates, like the salts $K[C_6H_{5-n}F_nBF_3]$ and $K[C_nF_{2n+1}BF_3]$, are practically insoluble in weakly polar, weakly coordinating solvents [3]. BF₃ gas dissolves at low temperature in such solvents like CH_2Cl_2 or CCl_3F . Bubbling of BF₃ into the stirred suspension of potassium polyfluoroalken-1-yltrifluoroborate salts in CH_2Cl_2 or in CCl_3F at -40 to -60 °C led to the easy defluoridation under formation of the corresponding polyfluoroalken-1yldifluoroboranes in high yields.

$$\begin{split} K[RCF = CFBF_3]_{(s)} + BF_{3(g)} & \xrightarrow{CH_2Cl_2 \text{ or } CCl_3F} \\ + RCF = CFBF_2 \\ \end{split}$$

 $R = F (1); cis-, trans-Cl (2); cis-C_2F_5 (3); cis-C_6F_{13} (4); trans-C_4F_9 (5); trans-C_4H_9 (6); trans-C_6H_5 (7).$

^{*} Corresponding author. Tel.: + 49-203-379-3310; fax: + 49-203-379-2231.

E-mail address: frohn@uni-duisburg.de (H.-J. Frohn).

Table 1 The 11 B-NMR spectra of polyfluoroalken-1-yldifluoroboranes RCF=CFBF₂^a

R	$\delta(\mathbf{B})$ (ppm)	$\tau_{1/2}$ (Hz)		
F [8]	21.8 ^b	n.d.		
cis-Cl	21.99	186		
$cis-C_2F_5$	20.28	106		
$cis-C_6F_{13}$	20.66	140		
trans-Cl	21.10	175		
trans- C_4F_9	20.04	156		
trans-C ₄ H ₉	21.72	160		
c	22.6	n.d.		

^a Solutions in CH₂Cl₂. Substituents R are in *cis* or *trans* positions relative to the BF_2 group.

^b In toluene- d_8 .

^c CH₂=CHBF₂ [9].

Defluoridation under the above conditions is neither accompanied by the migration of the C=C bond into the carbon chain nor by *cis*, *trans*-isomerisation of the products.

Alkenyldifluoroboranes 1-7 are well soluble either in CH₂Cl₂ or in CCl₃F at room temperature. Compounds 4 and 5 with the perfluorinated long alkyl chain separate at lower temperature forming compact oil phases. The solutions of boranes 1-5 are stable at 20 °C over

Table 2 The ¹⁹F-NMR spectra of polyfluoroalken-1-yldifluoroboranes $RCF = CFBF_{2}^{a}$

days under a dry argon atmosphere, whereas the solutions of **6** and **7** are less stable and decompose at 20 °C within some hours to give BF₃, *trans*-RCF=CFH and additionally unrecognised fluoroorganics.

The ¹¹B-NMR spectra of the difluoroboranes 1-5 show the resonance of the boron atom at 21-22 ppm. This coincides with the previously reported ¹¹B-NMR data of CH₂=CHBF₂ and CH₂=CFBF₂ (Table 1) and is similar to those of fluoroaryldifluoroboranes [1] and perfluoroalkyldifluoroboranes [2]. In all cases, the ¹¹B-NMR signals are broad and unresolved ($\tau_{1/2} \approx 100-190$ Hz) due to the electric quadrupole of the three-coordinated boron atom (Table 1). The ¹⁹F resonances of the fluorine atoms bonded to boron are located at -80 to -88 ppm and appear broad and unresolved regardless of the temperature (-40 to + 24 °C) (Table 2). It should be noted that replacement of the fluorine atom in the *trans*-position to the BF₂ group by the substituents R = Cl, C_4H_9 and C_6H_5 has no effect on the $\delta(F)$ values of the fluorine atoms bonded at boron. The ¹⁹F resonance of the BF₂ group in vinyldifluoroborane CH_2 =CHBF₂ is also located in the same region at -89ppm [11]. However, a remarkable deshielding of the fluorine atoms of the BF₂-group is observed in the spectra of the difluoroboranes cis-¹⁹F-NMR $RCF=CFBF_2$ ($R = Cl, C_2F_5, C_6F_{13}$) and trans-

R	$\delta(F)$ (ppm)				J (Hz)		
	F-1	F-2 <i>cis</i>	F-2trans	BF ₂	1,2 <i>cis</i>	2cis,BF	2cis,2trans
F(-40 °C)	-207.19	-98.96	-72.06	- 87.06	114	24	16
F [10] ^b	-206.6	-99.8	-72.8	-86.7	114	25	18
F (24 °C) °	Cl	-68.04	-55.98	n.d.	_	n.d.	n.d.
F (−40 °C) °	Cl	-68.09	-55.79	n.d.	_	n.d.	n.d.
trans-Cl (24 °C)	-171.64	-97.68	_	-86.12	134	24	_
<i>trans</i> -Cl (-40 °C)	-172.26	-97.92	_	-86.50	133	27	_
F [5] ^d	CF ₃ ^e	-57.3	-47.6	-82.2	_	n.d.	39.0
trans-C ₄ H ₉ (24 °C)	-184.86	-124.70	- ^f	-87.71	129	27	_
trans- C_4H_9 (-20 °C)	-184.88	-124.85	_ g	-87.63	130	n.d.	_
trans-C ₆ H ₅ (24 °C)	-178.88	-136.30	_	-87.00	128	n.d.	_
trans- C_4F_9 (24 °C)	-166.57	-149.08	_ ^h	-82.97	123	n.d.	_
cis-Cl (24 °C)	-159.59	_	-68.77	-83.12	_	_	_
<i>cis</i> -C ₆ F ₁₃ (24 °C)	-146.27	_ ⁱ	-123.31	-78.98	_	_	_
cis-C ₂ F ₅ (24 °C)	-146.97	_ j	-124.25	-80.36	_	_	_
cis-BF ₂ [6]	-158	_	-158	-80.6	_	_	_

^a Solutions in CH₂Cl₂. Fluorine atoms are in *cis* or *trans*-positions relative to the BF₂ group.

^b In CFCl₃.

^c Derived from an admixture (9%) of K[CF₂=CClBF₃].

e δ(F): -59.9 (CF₃); J, Hz: (2cis,CF₃) 22.6, J, Hz: (2trans,CF₃) 12.0.

^f J, Hz: (2,H-3) 25.

- $^{g} \delta$ (H): 2.61 (2 H-3), ~1.4 (2 CH₂), 0.86 (3 H-6).
- ^h δ (F): -81.71 (3 F-6), -119.14 (2 F-3), -125.05, -126.92 (2 CF₂).

ⁱ δ(F): -81.48 (3 F-8), -116.79 (2 F-3), -122.49, -123.31 (3 CF₂), -126.68 (2 F-7).

 $^{j}\delta(F)$: -84.97 (3 F-4), -120.33 (2 F-3).

^d Neat liquid.

 $C_4F_9CF=CFBF_2$. Similar phenomena were observed for *cis*-BF₂CF=CFBF₂ [6] and CF₂=C(CF₃)BF₂ [5]. Also the introduction of fluorine atoms in the *ortho*-positions of aryldifluoroboranes $C_6H_{5-n}F_nBF_2$ caused a similar effect [1]. It is likely, that this effect arises from an intramolecular fluorine-boron interaction.

Little information about the reactivity of fluoro-containing alkenyldifluoroboranes was known. It was reported that the interaction of borane **1** with water at room temperature resulted neither in carbon-boron nor in fluorine-boron bond cleavage but the products were not characterised. Alternatively, the quantitative protodeborylation of difluoroborane **1** took place at 120 °C (15 h) yielding trifluoroethylene [4]. The hydrolysis of compound $CF_2=C(CF_3)BF_2$ resulted in the polyfluorinated olefin $CF_2=CHCF_3$ (conditions were not reported) [5].

We have investigated the reactivity of some difluoroboranes towards water and ether and we have found that the treatment of difluoroboranes 1 and 3 with ether in CH_2Cl_2 gave as expected the etherates 8 and 9 in quantitative yield.

$$RCF = CFBF_{2} + OEt_{2} \xrightarrow[-40^{\circ}C \text{ to r.t.}]{CH_{2}Cl_{2}} RCF = CFBF_{2} \cdot OEt_{2}$$
$$R = F (8); \ cis-C_{2}F_{5} (9).$$

The coordination of diethyl ether (neutral *n*-electron donor) at the boron atom leads to a dramatic redistribution of the charge in the molecule which is reflected in the ¹⁹F-NMR spectra. The spectrum of etherate 8 consists of four resonances at -94.32 (F-2*trans*), -118.82 (F-2*cis*), -199.71 (F-1) and -149.04(BF₂·OEt₂) ppm [J, Hz: (1,2*cis*) 114, (1,2*trans*) 17, (2cis,2trans) 73, (2cis, BF₂·OEt₂) 14 and (F,B) 46]. The ¹⁹F-NMR spectrum of compound 9 displays signals at -119.77 (2 F-3), -84.85 (3 F-4), -147.79(BF₂·OEt₂), -137.78 and -146.49 (F-1 and F-2*trans*) ppm. A comparison of the spectra of the adducts 8 and 9 with those of the starting difluoroboranes 1 and 3 (Table 2) and those of the corresponding salts K[RCF=CFBF₃] [3], demonstrates the dramatic changes when the BF₂ group [1] with the strongest σ - and π -electron accepting effect is converted to the neutral $BF_2 \cdot OEt_2$ group with a tetra coordinated boron atom or to the negatively charged BF_3^- group with the strongest σ -electron donating and negligible mesomeric effect [1].

When CH₂Cl₂ solutions of RCF=CFBF₂ were reacted with water at 0 °C (R = F) or at ≥ -78 °C (R = *cis,trans*-Cl), the formation of the anions [RCF=CFBF₃]⁻ [3] and [BF₄]⁻ was detected in the aqueous phase (¹⁹F-NMR). No ¹⁹F-NMR signals which could be attributed to the alkenes RCF=CFH or the boronic acids RCF=CFB(OH)₂ were observed neither in the aqueous nor in the organic phase. It is known from literature [4] that diffuoroboranes RCF=CFBF₂ can dissolve BF₃. We have observed BF₃ after saturation of difluoroborane solutions at -40 °C (¹⁹F), but BF₃ was not detected (¹⁹F) after degasing. Admixtures of BF₃, which are still present, may be the additional source of HF during hydrolysis and responsible for the conversion of compounds 1 and 2 into [RCF=CFBF₃]⁻ and the basis of [BF₄]⁻ in the concurrent absence of RCF=CFH.

However, in anhydrous HF (aHF) the difluoroboranes 1 and 2 underwent protodeborylation and the corresponding fluoro-containing alkenes RCF=CFH were formed. After shaking the CF₂=CFBF₂ solution in CH₂Cl₂ with aHF at -40 °C, the acidic phase contained both CF₂=CFH and difluoroborane 1. It is noteworthy to mention that the ¹⁹F-NMR spectrum of the latter did not differ from that of CF₂=CFBF₂ in CH₂Cl₂. This fact verifies that no significant complex formation between trifluorovinyldifluoroborane and aHF takes place. A similar picture was observed during the reaction of difluoroborane 2 with aHF.

$$RCF = CFBF_2 + aHF \rightarrow RCF = CFH + BF_3$$

R = F; *cis-*, *trans-*Cl.

Alternatively, the addition of aHF to a solution of trans-C₄F₉CF=CFBF₂ in CH₂Cl₂ at -20 °C followed by warming up to room temperature did not result in the protodeborylation. The ¹⁹F-NMR spectrum of the acidic phase showed resonances at -79.53 (3 F-6), -115.83 (2 F-3), -122.83, -124.50 (2 F-4 and 2 F-5), -159.83 (F-1) and -169.17 (F-2) ppm [J(1,2) 132 Hz], whereas the resonance of the fluorine atoms bonded to boron was not observed. The organic phase contained only traces of HF and the above-mentioned signals. This spectrum coincides with the spectrum obtained from K[trans-C₄F₉CF=CFBF₃] in aHF and differs from that of the salt in MeCN [resonances at -80.41, -115.95, -124.12, -125.60, -153.06 and -177.16 ppm, respectively, and at -144.03 (BF₃) ppm; J(1,2) 130 Hz] [3]. Presumably, in aHF the formation of a complex between difluoroborane 5 (Lewis acid) and HF (F-terminus acts as Lewis base) occurred. In fact, the observed ¹⁹F-NMR spectrum can present an equilibrium between the neutral difluoroborane 5, HF and the protonated perfluoro-trans-hexen-1vltrifluoroborate.

trans-C₄F₉CF=CFBF₂ + 3HF \longrightarrow

[H₂F][*trans*-C₄F₉CF=CFBF₂(F···HF)]

Taking into account the complex formation of 5 in aHF and the absence of a related complex of $CF_2=CFBF_2$ in aHF, the protodeborylation of difluoroboranes 1 and 2 can be described in terms of the direct attack of the proton on the carbon atom C-1 bonded to boron.

It should be noted that fluoroalkenes RCF=CFH (R = F, cis, trans-Cl) are significantly soluble in aHF

at -40 °C although their ¹⁹F-NMR spectra show no protonation. For instance, the solution of CF₂=CFH in aHF (-40 °C) displays resonances at -99.69 (F-2*trans*), -125.98 (F-2*cis*) and -205.27 (F-1) ppm [*J*, Hz: (1,H) 70.9, (1,2*cis*) 116.7, (1,2*trans*) 33.0, (2*cis*,H) 3.4, (2*cis*,2*trans*) 88.4, (2*trans*,H) 12.6] (the positions of the fluorine atoms are with respect to the hydrogen atom). A solution of CF₂=CFH in CH₂Cl₂ (-40 °C) is characterised by ¹⁹F resonances at -101 22 (F-2*trans*)

the fluorine atoms are with respect to the hydrogen atom). A solution of CF₂=CFH in CH₂Cl₂ (-40 °C) is characterised by ¹⁹F resonances at -101.22 (F-2*trans*), -127.04 (F-2*cis*) and -206.27 (F-1) ppm [*J*, Hz: (1,H) 70.5, (1,2*cis*) 117.6, (1,2*trans*) 32.4, (2*cis*,H) 3.8, (2*cis*,2*trans*) 83.6, (2*trans*,H) 13.2] These spectral data coincide well with those taken from [12]. It is noteworthy, that the ¹⁹F value δ (F-1) of CF₂CFH given in Ref. [13] is erroneous. This wrong value is cited in the books [14,15] and the new monograph [16].

3. Experimental

NMR spectra were measured on Bruker spectrometers WP 80 SY (¹H at 80.13 MHz and ¹⁹F at 75.39 MHz) and Avance DRX 500 (¹H at 500.13 MHz, ¹¹B at 160.46 MHz and ¹⁹F at 470.59 MHz). Shift values were reported with respect to TMS (¹H), BF_3 ·OEt₂ (¹¹B) and CCl₃F (¹⁹F).

Dichloromethane, ether and CCl_3F were purified and dried by standard procedures. Hydrogen fluoride was dried by electrolysis (stainless steel cell, Ni electrodes). The preparation of salts K[RCF=CFBF₃] (R = F, *trans*-C₄F₉, *cis*-C₂F₅, *cis*-C₆F₁₃, *trans*-C₄H₉, *trans*-C₆H₅) and K[*cis*-, *trans*-ClCF=CFBF₃] (contains additionally 9% of K[CF₂=CClBF₃]) is described in Ref. [3].

All manipulations of moisture-sensitive compounds were performed in FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) equipment under a dry argon atmosphere.

3.1. Preparation of RCF=CFBF₂ (general procedure)

Potassium polyfluoroalken-1-yltrifluoroborate K[RCF=CFBF₃] was suspended in CH₂Cl₂ or in CCl₃F at -40 to -65 °C and BF₃ (4–5 M excess) was bubbled for 20–60 min under stirring. The reaction mixture was flushed with dry argon to remove the excess of BF₃. After centrifugation at temperatures below -40 °C (R = F, *cis*-, *trans*-Cl) or at -20 °C (R = *trans*-C₄H₉) or at room temperature (r.t.) (R = *trans*-C₄F₉, *cis*-C₂F₅, *cis*-C₆F₁₃, *trans*-C₆H₅), the mother liquor was decanted, the precipitate was washed with CH₂Cl₂, and the extract was combined with the mother liquor. Yields of difluoroboranes RCF=CFBF₂ were higher than 80–90% (¹⁹F-NMR with the internal quantitative references CFCl₂CF₃Cl or PhCF₃).

3.2. Reaction of $RCF=CFBF_2$ with ether

A solution of RCF=CFBF₂ (R = F, *cis*-C₂F₅) (0.3– 0.4 mmol) in CH₂Cl₂ (0.3–0.4 ml) was cooled to -40 °C and anhydrous ether (1.7–2 M equivalents) was added. The solution was warmed to r.t. and showed the quantitative conversion of RCF=CFBF₂ to RCF=CFBF₂·OEt₂ (¹⁹F-NMR).

3.3. Reactions of RCF=CFBF₂ with water

A. Ice water (0.4 ml) was added to a solution of $CF_2=CFBF_2$ (0.42 mmol) in CH_2Cl_2 (0.48 ml) at 0 °C and the mixture was shaken. The aqueous phase was decanted at 20 °C and diluted with D₂O (0.3 ml). The ¹⁹F-NMR spectrum showed resonances at -150.61 ppm ([H₃O] [BF₄]) and at -98.53 (F-2*trans*), -123.14 (F-2*cis*), -199.00 (F-1) and -142.70 (BF₃⁻) ppm [J, Hz: (1,2*cis*) 110, (2*cis*,2*trans*) 87, (2*cis*,BF₃) 9, (F,B) 38] ([H₃O] [CF₂=CFBF₃]).

B. A solution of *cis*-, *trans*-ClCF=CFBF₂ (0.6 mmol) in CH₂Cl₂ (0.9 ml) was treated with aqueous acetone (0.3 ml; 0.08 mg of water) at -78 °C. After warming to r.t. the organic phase contained no *cis*-, *trans*-ClCF=CFH (¹⁹F-NMR). An additional amount of water (0.3 ml) was added and finally the water-containing phase was decanted. Its ¹⁹F-NMR spectrum showed resonances of the anions [BF₄]⁻ (-151.07 ppm), [*cis*-ClCF=CFBF₃]⁻ [-102.02 (F-2*trans*), -151.07 (F-1) and -142.61 (BF₃⁻) ppm], and [*trans*-ClCF=CFBF₃]⁻ [-126.80 (F-2*cis*), -162.13 (F-1) and -143.25 (BF₃⁻) ppm; *J*, Hz: (1,B) 25, (1,2*cis*) 129, (2*cis*,BF₃) 9, (F,B) 40].

3.4. Reactions of RCF=CFBF₂ with aHF

A solution of RCF=CFBF₂ (R = F, *cis-*, *trans-*Cl, *trans-*C₄F₉) (0.2–0.4 mmol) in CH₂Cl₂ (0.3–0.8 ml) was cooled (-40 to -50 °C). Cold (-40 °C) aHF (0.2– 0.4 ml) was added under an argon atmosphere. After repeated shaking, the acidic phase was decanted into the pre-cooled (-40 °C) FEP inliner and analysed by ¹⁹F-NMR spectroscopy.

Acknowledgements

We gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft, Russian Fonds of Basic Research and Fonds der Chemischen Industrie.

References

- H.-J. Frohn, H. Franke, P. Fritzen, V.V. Bardin, J. Organomet. Chem. 598 (2000) 127.
- [2] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 627 (2001) 15.
- [3] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem., in press.
- [4] S.L. Stafford, F.G.A. Stone, J. Am. Chem. Soc. 82 (1960) 6238.
- [5] R.D. Wilson, W. Maya, D. Pilipovich, K.O. Christe, Inorg. Chem. 22 (1983) 1355.
- [6] P.L. Timms, J. Am. Chem. Soc. 89 (1967) 1629.
- [7] H.-J. Frohn, V.V. Bardin, 16th International Symposium on Fluorine Chemistry, Durham, Great Britain, 16–21 July 2000, 2P–21.
- [8] E.J. Stampf, J.D. Odom, J. Organomet. Chem. 108 (1976) 1.

- [9] J.D. Odom, L.W. Hall, S. Riethmillier, J.R. Durig, Inorg. Chem. 13 (1974) 170.
- [10] T.D. Coyle, S.L. Stafford, F.G.A. Stone, Spectrochim. Acta 17 (1961) 968.
- [11] S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen. In: ¹⁹F-NMR-Spektroskopie, vol. 4, Thieme, Stuttgart, 1994, p. 7.
- [12] N.M. Sergeev, N.N. Shapetko, Teor. Eksperim. Khim. 2 (1966) 812.
- [13] C.G. Moreland, W.S. Brey, J. Chem. Phys. 45 (1966) 803.
- [14] C.H. Dungan, J.R. van Waser, Compilation of Reported ¹⁹F Chemical Shifts, Wiley, New York, 1970 (no. 882).
- [15] J.W. Emsley, L. Phillips, Prog. NMR Spectrosc. 7 (1971) 235.
- [16] S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen. In: ¹⁹F-NMR-Spektroskopie, vol. 4, Thieme, Stuttgart, 1994 (p. 29).